
Simple AngularJS thanks to

Best Practices

Learn AngularJS the easy way

Level 100-300

What’s this session about?

1. AngularJS can be easy
 when you understand basic concepts and
best practices

2. But it can also be messy and difficult
 if you follow most online examples for
just about anything

I had to learn this the hard way 
I want to make it easier for you
With know-how and sample code

Quick Bad-Example Code

Taken from AngularJS documentation. This example use
the old $scope concept which you should avoid nowdays.

Don’t worry if you don’t understand this – it’s meant to
keep advanced developers in the room .

1. Demo
2. What is AngularJS
3. Deep Dive and Learn
Goal: Get to know AngularJS based on a real App built
with as many simple best practices as I could think of.

Example AngularJS App
Think of a DNN-Module, just simpler

Live Demo

Feedback given by anonymous users
Feedback management for Admin users
Download current edition http://2sxc.org/apps

SoC Server and Client

Server Concerns
 Storage of Data
 Ability to deliver Data

when needed
 Sorted Categories
 All/one Feedback Items

 Ability to do other CRUD
 Create, Read, Update Delete

 REST
 Permissions on Content-

Types (allow create…)
No code (zero c#)

Client Concerns

 Form UI for new items
 Instructs Server what to

do (Create, Read, …)
 List-UI for admin
 Change UIs when editing

 Messages
 Dialogs
 refresh

All code is on the client

Look at the wire (live glimpse)

Let’s watch these processes

 Get Categories
 Create Feedback-Item
 Get All Feedback Items
 Status-Update Feedback-

Item
 Update/Edit Feedback
 Delete

Standard REST calls
Special DNN headers

Recommended Tools

 Chrome Debug
 Firebug

Favorite: Fiddler (free,
originally by Microsoft, now
by Telerik)
 Allows detailed analysis

of everything
 Allows live testing (modify

request etc.)

Quick look at the Backend

 Data
 Content-Types
 REST
 security

 Query to get sorted categories

That’s it 

So what is AngularJS?

AngularJS is a System to create
simple and complex JS Apps

Think of MVC or any other MV** - live, not disconnected
on the server using ASP, PHP, Ruby…

Core things in solves

1. Splitting the App into small, clearly defined
blocks

2. Conventions on solving many specific
challenges like

1. DOM control, Data Binding
2. Communicating with the Server
3. SoC and IoC (Dependency Injection)

3. Clear pattern based work style
4. Best-Practices on writing JavaScript code
(more features: url, testing, extensions, etc.)

#1 Splitting functional blocks (parts
of Angular Apps – usually grouped)

Views

• Feedback Form

• Admin Form

• Partial Forms

Services

• Categories Service

• Feedback Service

• Content Service

• $http Service

Controllers

• Create Controller

• Admin Controller

• Edit Controller

AngularJS glues it all
together (aka compiles). At
runtime it’s called an App.

AngularJS provides
additional features (built-in

services, directives etc.)

Special DNN-Aware Initializers / Helpers
Extremely important to keep everything else simple

A simple View / Controller

• Very easy to understand
• Clearly separates view from

view-model
• View only operates with data

provided by controller and
doesn’t try to retrieve data

Comparing it to jQuery,
knockoutJS etc.
Summary: jQuery is becoming obsolete thanks to new
browsers; knockoutJS does about 20% of AngularJS.
In Detail: later, when you understand more…

Visions

1. Super fast AJAX Web Apps
2. Server-Agnostic: Create an App for DNN,

re-use it in Drupal, Umbraco, DNN-X etc.
3. Almost no Server-Code

1. Server doing 80%-100% with standard REST
2. and maybe 20% with custom WebAPI

4. Google-Indexable JS Apps!

 Read blogs about REST, Google/JS etc.

SoC Pattern
Separation of Concerns

Splitting JavaScript Apps into
small parts is key to
maintainable code
Jungleboy wisdom #1

But don’t overdo it 

Jungleboy Wisdom #2
Don’t create a service for a 1-line of Content-Get

Spend more time on
architecture, less on code
Jungleboy wisdom #3

Break: Help us with 2sxc!
We need people passionate about bootstrap, knockoutJS,
Ember, content-design, css3, … for the community

#1 Discover Views and
View Best Practices

View Template for New
Feedback (live)

Basics to understand

1. View handles lots of simple stuff like
1. Show/Hide; if, switch, etc. Directives
2. Data-Binding of “Core data” = Feedback
3. Data-Binding of Helper-Data (Categories)

2. Very simple stuff is very simple (just like
with knockoutJS, …)

3. Binding is “real” and works with dirty-
checking = more performant in real-live
scenarios than Observers in knockoutJS

Lessons Learned / Best Practices

1. Use simple HTML & CSS
2. View-Stuff is easy, the list of basic

features is rather short/simple
3. Some things are a bit trickier

1. Drop-down binding has many features, you
have to figure out which variation you want

2. Use custom Directives for anything advanced
(SoC)

Best Practices

1. Use Controller As Syntax; avoid $scope
2. Try to work with a VM-item that is built

like the server read/writes it in the REST
3. IMHO this is the only place where you

should use the ModuleId (in an attribute).

Discover the Controller of
New Feedback (Live)

Controllers Initialize VMs

Load Helper Data

Build / Create new
View Model. Controller
only does that; it’s not
needed any more after

this one-time call.

Load Primary data

defines the actions
available and attaches

them to the view-
model

Summary: It’s in charge of
initializing one view-model (data,
helper-data, actions)

Lessons Learned / Best Practice

1. Use vm = this; to support Controller As
2. Use simple Dependency Injection
3. The controller should do View-Model

initialization and nothing else.
4. Avoid $scope in your controller and all DOM-

manipulations.
1. the $scope is the most common source for

bugs, because it’s much more complex than it
look (partial scopes, etc.)

2. Passing $scope around get’s very messy and is
against SoC and it’s not necessary…

3. It’s a bit like a virus – like static methods in C#

Lessons Learned / Best Practice

1. Don’t access DNN-Internal stuff (like
ServiceFramework) in your controller.

1. Unofficial dependencies = bad
2. Wrong SoC – should be in a service

2. Avoid using the module-ID in your controller
1. Not for DOM-coding (you shouldn’t need

$(…mid…) in the controller – use data binding)
2. Not for $http config (not in controller)
3. Not for initializing a service (use dependency

injection)

Service – in charge of Data
(Live: Categories Service)

Basics

1. The Service is in charge of Data (or other
things like a toastr, calculations, interface
to DNN, …)

2. It can do get/put
3. It can also keep data-states (like a cached

list of categories)

Lessons Learned / Best Practices

1. Create a service for each purpose
(categories, feedback, etc.) – it’s simple
and easy to manage

2. Keep resource calls simple – DON’T
handle DNN-Specials at Service level…

3. So you usually don’t need the ModuleID!
4. Rely on IoC (Dependency Injection) to give

you a $http which already works

Advanced Topics

Application Initialization
and SPA vs. MAP

Basic Concept

1. Initializing an App assembles all parts of the
App together:

1. Services, Views, Controllers
2. Depended-On-Services like $http, …

2. AngularJS could start you App automatically,
but it shouldn’t, because

1. DNN is strong in multiple “things” per page –
which is a very common web-scenario – think of
single-pagers. SPAs are not the normal scenario
at all!

2. Your Apps need DNN-specific Dependencies to
work

What should Initialization do better?

See the live code 2sxc4ng.js
1. Initialize multiple Apps per Page
2. Provide important DNN-infos like the

Module-ID to the app-parts; also handle
mid-in-URL

3. Reconfigure $http to handle DNN specials
1. Correct DNN-API URLs
2. Include anti-forgery tokens
3. Include ModuleId in header etc.

Solutions

1. Do your own bootstrapping…
2. …or use an advanced automatic

bootstrapping like we did in 2sxc

I strongly recommend that you run your
AngularJS within 2sxc (saves you a lot of
work) OR that you imitate what we did there
in the bootstrapping.

Dependencies and
Dependency Injection (IoC)

Concept

1. Very often a part of your code needs other
things (it depends on other code).

1. Context like ModuleId
2. Shared code/objects like code to access the

server (Services)
2. The “old” way to do that is to pass this

around: CreateFeedback(moduleId, data)
3. This doesn’t scale – as it needs more and

more parameters for each call – often
just to pass on to deeper calls

Solution: Dependency Injection

 All systems are “available when needed” –
because another system (usually called
the Dependency Injector) can supply them
on demand.

 In AngularJS each module (view, service,
etc.) can be specified as dependency, so
Angular can coordinate that they are
available.

 So new: CreateFeedback(data);

Example with $http

 $http is a service, the standard AngularJS
XHR (AJAX) component.

 Other services register the need for using
it. The DO NOT NEED TO KNOW THAT $http
IS DIFFERENT IN DNN. The DI will
automatically deliver the “right” $http.

 Any DNN AngularJS App which re-
configures $http in it’s own services does
it wrong by not adheering to SoC.

Summary

 Start small, don’t over-
engineer. Just be
flexible enough to
grow as needed.

 SoC: Keep Concerns
very, very separate

 Controller As instead
of $scope

 Read John Papas
Best Practices

 SPA MAP
 Use Dependency

Injection
 Use JSON-View-Model

for client, separate from
helper data

 Give to Ceasar…:
Let the server do data,
let the client do view

 And don’t worry too
much about MVC on
the server 

Summary

Questions?

Offline Web Sites / Apps
@ 11:00

Vs. knockoutJS

